Monday, 23 June 2014

Blocking brain’s ‘marijuana’ spurs Alzheimer’s?


Two Columns Down


A new study led by investigators at the Stanford University School of Medicine has implicated the blocking of endocannabinoids — signaling substances that are the brain’s internal versions of the psychoactive chemicals in marijuana and hashish — in the early pathology of Alzheimer’s disease.
A substance called A-beta — strongly suspected to play a key role in Alzheimer’s because it’s the chief constituent of the hallmark clumps dotting the brains of people with Alzheimer’s — may, in the disease’s earliest stages, impair learning and memory by blocking the natural, beneficial action of endocannabinoids in the brain, the study demonstrates. The Stanford group is now trying to figure out the molecular details of how and where this interference occurs. Pinning down those details could pave the path to new drugs to stave off the defects in learning ability and memory that characterize Alzheimer’s.
In the study, published June 18 in Neuron, researchers analyzed A-beta’s effects on a brain structure known as the hippocampus. In all mammals, this midbrain structure serves as a combination GPS system and memory-filing assistant, along with other duties.

“The hippocampus tells us where we are in space at any given time,” said Daniel Madison, PhD, associate professor of molecular and cellular physiology and the study’s senior author. “It also processes new experiences so that our memories of them can be stored in other parts of the brain. It’s the filing secretary, not the filing cabinet.”
Applying electrophysiological techniques to brain slices from rats, Madison and his associates examined a key hippocampal circuit, one of whose chief elements is a class of nerve cells called pyramidal cells. They wanted to see how the circuit’s different elements reacted to small amounts of A-beta, which is produced throughout the body but whose normal physiological functions have until now been ill-defined.
A surprise finding by Madison’s group suggests that in small, physiologically normal concentrations, A-beta tamps down a signal-boosting process that under certain conditions increases the odds that pyramidal nerve cells will transmit information they’ve received to other nerve cells down the line.
When incoming signals to the pyramidal tract build to high intensity, pyramidal cells adapt by becoming more inclined to fire than they normally are. This phenomenon, which neuroscientists call plasticity, is thought to underpin learning and memory. It ensures that volleys of high-intensity input — such as might accompany falling into a hole, burning one’s finger with a match, suddenly remembering where you buried the treasure or learning for the first time how to spell “cat” — are firmly stored in the brain’s memory vaults and more accessible to retrieval.
These intense bursts of incoming signals are the exception, not the rule. Pyramidal nerve cells constantly receive random beeps and burps from upstream nerve cells — effectively, noise in a highly complex, electrochemical signaling system. This calls for some quality control. Pyramidal cells are encouraged to ignore mere noise by another set of “wet blanket” nerve cells called interneurons. Like the proverbial spouse reading a newspaper at the kitchen table, interneurons continuously discourage pyramidal cells’ transmission of impulses to downstream nerve cells by steadily secreting an inhibitory substance — the molecular equivalent of yawning, eye-rolling and oft-muttered suggestions that this or that chatter is really not worth repeating to the world at large, so why not just shut up.
Passing along the message
But when the news is particularly significant, pyramidal cells squirt out their own “no, this is important, you shut up!” chemical — endocannabinoids — which bind to specialized receptors on the hippocampal interneurons, temporarily suppressing them and allowing impulses to continue coursing along the pyramidal cells to their follow-on peers.
-Source: sciencedaily.com

No comments:

Post a Comment